
Approximability of p → q Matrix Norms:

Generalized Krivine Rounding and Hypercontractive Hardness

Vijay Bhattiprolu ∗ Mrinalkanti Ghosh† Venkatesan Guruswami‡ Euiwoong Lee§

Madhur Tulsiani¶

Abstract

We study the problem of computing the p→ q operator
norm of a matrix A in R

m×n, defined as ||A||p→q :=
supx∈Rn\{0} ||Ax||q/||x||p. This problem generalizes the
spectral norm of a matrix (p = q = 2) and the
Grothendieck problem (p = ∞, q = 1), and has been
widely studied in various regimes.

When p ≥ q, the problem exhibits a dichotomy:
constant factor approximation algorithms are known if
2 is in [q, p], and the problem is hard to approximate
within almost polynomial factors when 2 is not in [q,p].
For the case when 2 is in [q, p] we prove almost matching
approximation and NP-hardness results.

The regime when p < q, known as hypercontractive
norms, is particularly significant for various applications
but much less well understood. The case with p = 2
and q > 2 was studied by [Barak et. al., STOC’12] who
gave sub-exponential algorithms for a promise version of
the problem (which captures small-set expansion) and
also proved hardness of approximation results based on
the Exponential Time Hypothesis. However, no NP-
hardness of approximation is known for these problems
for any p < q.

We prove the first NP-hardness result for approxi-
mating hypercontractive norms. We show that for any
1 < p < q < ∞ with 2 not in [p, q], ||A||p→q is hard

to approximate within 2O(log1−εn) assuming NP is not

contained in BPTIME(2 logO(1)n).
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1 Introduction

We consider the problem of finding the p→q norm of a
given matrix A ∈ R

m×n, which is defined as

‖A‖p→q := max
x∈Rn\{0}

‖Ax‖q
‖x‖p

.

The quantity ‖A‖p→q is a natural generalization of
the well-studied spectral norm, which corresponds to
the case p = q = 2. For general p and q, this
quantity computes the maximum distortion (stretch) of
the operator A from the normed space ℓnp to ℓmq .

The case when p = ∞ and q = 1 is the well known
Grothendieck problem [KN12, Pis12], where the goal is
to maximize 〈y,Ax〉 subject to ‖x‖∞, ‖y‖∞ ≤ 1. In
fact, via simple duality arguments, the general problem
computing ‖A‖p→q can be seen to be equivalent to the
following variant of the Grothendieck problem (and to
‖AT ‖q∗→p∗)

‖A‖p→q = max
‖x‖p≤1
‖y‖q∗≤1

〈y,Ax〉 = ‖AT ‖q∗→p∗ ,

where p∗, q∗ denote the dual norms of p and q, satisfying
1/p+ 1/p∗ = 1/q + 1/q∗ = 1.

1.1 Hypercontractive norms. The case when p <
q, known as the case of hypercontractive norms, also has
a special significance to the analysis of random walks,
expansion and related problems in hardness of approxi-
mation [Bis11, BBH+12]. The problem of computing
‖A‖2→4 is also known to be equivalent to determin-
ing the maximum acceptance probability of a quantum
protocol with multiple unentangled provers, and is re-
lated to several problems in quantum information the-
ory [HM13, BH15].

Bounds on hypercontractive norms of operators are
also used to prove expansion of small sets in graphs.
Indeed, if f is the indicator function of set S of measure
δ in a graph with adjacency matrix A, then we have
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that for any p ≤ q,

Φ(S) = 1− 〈f,Af〉
‖f‖22

≥ 1− ‖f‖q∗ · ‖Af‖q
δ

≥ 1− ‖A‖p→q · δ1/p−1/q .

It was proved by Barak et al. [BBH+12] that the above
connection to small-set expansion can in fact be made
two-sided for a special case of the 2→q norm. They
proved that to resolve the promise version of the small-
set expansion (SSE) problem, it suffices to distinguish
the cases ‖A‖2→q ≤ c · σmin and ‖A‖2→q ≥ C · σmin,
where σmin is the least non-zero singular value of A
and C > c > 1 are appropriately chosen constants
based on the parameters of the SSE problem. Thus,
the approximability of 2→q norm is closely related
to the small-set expansion problem. In particular,
proving NP-hardness of approximating 2→q norm is
(necessarily) an intermediate goal towards proving the
Small-Set Expansion Hypothesis of Raghavendra and
Steurer [RS10].

However, relatively few results algorithmic and
hardness results are known for approximating hyper-
contractive norms. A result of Steinberg’s [Ste05] gives

an upper bound of O(max {m,n}25/128) on the approx-
imation factor, for all p, q. For the case of 2→q norm
(for any q > 2), Barak et al. [BBH+12] give an approx-
imation algorithm for the promise version of the prob-

lem described above, running in time exp
(
Õ(n2/q)

)
.

They also provide an additive approximation algorithm
for 2→4 norm (where the error depends on the 2→2
norm and 2→∞ norm of A), which was extended to the
2→q norm by Harrow and Montanaro [HM13]. Barak
et al. also prove NP-hardness of approximating ‖A‖2→4

within a factor of 1 + Õ(1/no(1)), and hardness of ap-
proximating better than expO((log n)1/2−ε) in quasi-
polynomial time, assuming the Exponential Time Hy-
pothesis (ETH). This reduction was also used by Har-
row, Natarajan and Wu [HNW16] to prove that Õ(log n)
levels of the Sum-of-Squares SDP hierarchy cannot ap-
proximate ‖A‖2→4 within any constant factor.

It is natural to ask if the bottleneck in proving (con-
stant factor) hardness of approximation for 2→q norm
arises from the fact from the nature of the domain (the
ℓ2 ball) or from hypercontractive nature of the objec-
tive. As discussed in Section 4, all hypercontractive
norms present a barrier for gadget reductions, since if a
“true” solution x is meant to encode the assignment to a
(say) label cover problem with consistency checked via
local gadgets, then (for q > p), a “cheating solution” may
make the value of ‖Ax‖q very large by using a sparse x
which does not carry any meaningful information about
the underlying label cover problem.

We show that (somewhat surprisingly, at least for
the authors) it is indeed possible to overcome the barrier
for gadget reductions for hypercontractive norms, for
any 2 < p < q (and by duality, for any p < q < 2). This
gives the first NP-hardness result for hypercontractive
norms (under randomized reductions). Assuming ETH,
this also rules out a constant factor approximation

algorithm that runs in 2n
δ

for some δ := δ(p, q).

Theorem 1.1. For any p, q such that 1 < p ≤ q < 2
or 2 < p ≤ q < ∞ and a constant c > 1, unless

NP ∈ BPP, no polytime algorithm approximates p→q
norm within a factor of c. The reduction runs in time

nBpq for 2 < p < q, where Bp = poly(1/(1− γp∗)).

We show that the above hardness can be strengthened
to any constant factor via a simple tensoring argument.
In fact, this also shows that it is hard to approximate
‖A‖p→q within almost polynomial factors unless NP
is in randomized quasi-polynomial time. This is the
content of the following theorem.

Theorem 1.2. For any p, q such that 1 < p ≤ q <
2 or 2 < p ≤ q < ∞ and ε > 0, there is no

polynomial time algorithm that approximates the p→q
norm of an n × n matrix within a factor 2log

1−ε n

unless NP ⊆ BPTIME

(
2(logn)O(1)

)
. When q is an even

integer, the same inapproximability result holds unless

NP ⊆ DTIME

(
2(logn)O(1)

)

We also note that the operator A arising in our
reduction in Theorem 1.1 satisfies σmin(A) ≈ 1 (and is
in fact a product of a carefully chosen projection and
a scaled random Gaussian matrix). For such an A,
we prove the hardness of distinguishing ‖A‖p→q ≤ c
and ‖A‖p→q ≥ C, for constants C > c > 1. For
the corresponding problem in the case of 2→q norm,
Barak et al. [BBH+12] gave a subexponential algorithm
running in time exp

(
O(n2/q)

)
(which works for every

C > c > 1). On the other hand, since the running time
of our reduction is nO(q), we get that assuming ETH, no
algorithm can distinguish the above cases for p→q norm
in time exp

(
no(1/q)

)
, for any p ≤ q when 2 /∈ [p, q].

While the above results give some possible reduc-
tions for working with hypercontractive norms, it re-
mains an interesting problem to understand the role of
the domain as a barrier to proving hardness results for
the 2→q norm problems. In fact, no hardness results
are available even for the more general problem of poly-
nomial optimization over the ℓ2 ball. We view the above
theorem as providing some evidence that while hyper-
contractive norms have been studied as a single class so
far, the case when 2 ∈ [p, q] may be qualitatively dif-
ferent (with respect to techniques) from the case when
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to any p ≥ 2 ≥ q. The hardness factors obtained match
the performance of known algorithms (due to Steinberg
[Ste05]) for the cases of 2 → q and p → 2, and more-
over almost matches the algorithmic results mentioned
above.

Theorem 1.3. For any p, q such that ∞ ≥ p ≥ 2 ≥
q ≥ 1 and ε > 0, it is NP-hard to approximate the p→q
norm within a factor 1/(γp∗γq)− ε.

Both Theorem 1.1 and Theorem 1.3 are conse-
quences of a more technical theorem, which proves hard-
ness of approximating ‖A‖2→r for r < 2 (and hence
‖A‖r∗→2 for r∗ > 2) while providing additional struc-
ture in the matrix A produced by the reduction. We
also show our methods can be used to provide a sim-
ple proof (albeit via randomized reductions) of the

2Ω((logn)1−ε) hardness for the non-hypercontractive case
when 2 /∈ [q, p], which was proved by [BV11].

The Search For Optimal Constants and Op-

timal Algorithms. The goal of determining the right
approximation ratio for these problems is closely related
to the question of finding the optimal (rounding) algo-
rithms. For the Grothendieck problem, the goal is to
find y ∈ R

m and x ∈ R
n with ‖y‖∞, ‖x‖∞ ≤ 1, and one

considers the following semidefinite relaxation:

maximize
∑

i,j

Ai,j · 〈ui , vj〉 s.t.

subject to ‖ui‖2 ≤ 1, ‖vj‖2 ≤ 1 ∀i ∈ [m], j ∈ [n]

ui, vj ∈ R
m+n ∀i ∈ [m], j ∈ [n]

By the bilinear nature of the problem above, it is clear
that the optimal x, y can be taken to have entries in
{−1, 1}. A bound on the approximation ratio1 of the
above program is then obtained by designing a good
“rounding” algorithm which maps the vectors ui, vj to
values in {−1, 1}. Krivine’s analysis [Kri77] corresponds
to a rounding algorithm which considers a random
vector g ∼ N (0, Im+n) and rounds to x, y defined as

yi := sgn
(〈
ϕ(ui),g

〉)
and xj := sgn

(〈
ψ(vj),g

〉)
,

for some appropriately chosen transformations ϕ and
ψ. This gives the following upper bound on the
approximation ratio of the above relaxation, and hence
on the value of the Grothendieck constant KG:

KG ≤ 1

sinh−1(1)
· π
2

=
1

ln(1 +
√
2)

· π
2
.

1Since we will be dealing with problems where the optimal

solution may not be integral, we will use the term “approximation

ratio” instead of “integrality gap”.

Braverman et al. [BMMN13] show that the above
bound can be strictly improved (by a very small
amount) using a two dimensional analogue of the above
algorithm, where the value yi is taken to be a function of
the two dimensional projection (〈ϕ(ui),g1〉, 〈ϕ(ui),g2〉)
for independent Gaussian vectors g1,g2 ∈ R

m+n (and
similarly for x). Naor and Regev [NR14] show that such
schemes are optimal in the sense that it is possible to
achieve an approximation ratio arbitrarily close to the
true (but unknown) value of KG by using k-dimensional
projections for a large (constant) k. A similar existen-
tial result was also proved by Raghavendra and Steurer
[RS09] who proved that the there exists a (slightly dif-
ferent) rounding algorithm which can achieve the (un-
known) approximation ratio KG.

For the case of arbitrary p ≥ 2 ≥ q, Nesterov
[Nes98] considered the convex program in Figure 2,
denoted as CP(A), generalizing the one above. Note

maximize
∑

i,j

Ai,j · 〈u
i
, v

j〉 =

〈

A,UV
T
〉

subject to
∑

i∈[m]

‖ui‖q
∗

2 ≤ 1

∑

j∈[n]

‖vj‖p2 ≤ 1

u
i
, v

j ∈ R
m+n

u
i (resp. v

j) is the i-th (resp. j-th) row of U (resp. V )

Figure 2: The relaxation CP(A) for approximating p→q
norm of a matrix A ∈ R

m×n.

that since q∗ ≥ 2 and p ≥ 2, the above program is
convex in the entries of the Gram matrix of the vectors{
ui
}
i∈[m]

∪
{
vj
}
j∈[n]

. Although the stated bound in

[Nes98] is slightly weaker (as it is proved for a larger
class of problems), the approximation ratio of the above
relaxation can be shown to be bounded byKG. By using
the Krivine rounding scheme of considering the sign of
a random Gaussian projection (aka random hyperplane
rounding) one can show that Krivine’s upper bound on
KG still applies to the above problem.

Motivated by applications to robust optimization,
Steinberg [Ste05] considered the dual of (a variant of)
the above relaxation, and obtained an upper bound of
min {γp/γq, γq∗/γp∗} on the approximation factor. Note
that while Steinberg’s bound is better (approaches 1) as
p and q approach 2, it is unbounded when p, q∗ → ∞
(as in the Grothendieck problem).

Based on the inapproximability result of factor
1/(γp∗ · γq) obtained in this work, it is natural to ask
if this is the “right form” of the approximation ratio.
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Figure 3: A comparison of the bounds for approximating

p→p∗ norm obtained from Krivine’s rounding for KG, Steinberg’s

analysis, and our bound. While our analysis yields an improved

bound for 4 ≤ p ≤ 66, we believe that the rounding algorithm

achieves an improved bound for all p.

Indeed, this ratio is π/2 when p∗ = q = 1, which is the
ratio obtained by Krivine’s rounding scheme, up to a
factor of ln(1 +

√
2). We extend Krivine’s result to all

p ≥ 2 ≥ q as below.

Theorem 1.4. There exists a fixed constant ε0 ≤
0.00863 such that for all p ≥ 2 ≥ q, the approximation

ratio of the convex relaxation CP(A) is upper bounded

by

1 + ε0

sinh−1(1)
· 1

γp∗ · γq
=

1 + ε0

ln(1 +
√
2)

· 1

γp∗ · γq
.

Perhaps more interestingly, the above theorem is proved
via a generalization of hyperplane rounding, which we
believe may be of independent interest. Indeed, for
a given collection of vectors w1, . . . , wm considered as
rows of a matrix W , Gaussian hyperplane rounding
corresponds to taking the “rounded” solution y to be
the

y := argmax
‖y′‖∞≤1

〈y′,Wg〉 =
(
sgn

(〈
wi,g

〉))
i∈[m]

.

We consider the natural generalization to (say) ℓr
norms, given by

y := argmax
‖y′‖r≤1

〈y′,Wg〉

=

(
sgn

(〈
wi,g

〉)
·
∣∣〈wi,g〉

∣∣r∗−1

‖Wg‖r∗−1
r∗

)

i∈[m]

.

We refer to y as the “Hölder dual” ofWg, since the above
rounding can be obtained by viewing Wg as lying in the
dual (ℓr∗) ball, and finding the y for which Hölder’s
inequality is tight. Indeed, in the above language,

Nesterov’s rounding corresponds to considering the ℓ∞
ball (hyperplane rounding). While Steinberg used a
somewhat different relaxation, the rounding there can
be obtained by viewing Wg as lying in the primal (ℓr)
ball instead of the dual one. In case of hyperplane
rounding, the analysis is motivated by the identity that
for two unit vectors u and v, we have

E
g

[sgn(〈g, u〉) · sgn(〈g, v〉)] =
2

π
· sin−1(〈u, v〉) .

We prove the appropriate extension of this identity to
ℓr balls (and analyze the functions arising there) which
may also be of interest for other optimization problems
over ℓr balls.

Relation to Factorization Theory. Let X,Y be
Banach spaces, and let A : X → Y be a continuous
linear operator. As before, the norm ‖A‖X→Y is defined
as

‖A‖X→Y := sup
x∈X\{0}

‖Ax‖Y
‖x‖X

.

The operator A is said to be factorize through Hilbert
space if the factorization constant of A defined as

Φ(A) := inf
H

inf
BC=A

‖C‖X→H · ‖B‖H→Y

‖A‖X→Y

is bounded, where the infimum is taken over all Hilbert
spaces H and all operators B : H → Y and C : X → H.
The factorization gap for spacesX and Y is then defined
as Φ(X,Y ) := supA Φ(A) where the supremum runs
over all continuous operators A : X → Y .

The theory of factorization of linear operators is a
cornerstone of modern functional analysis and has also
found many applications outside the field (see [Pis86,
AK06] for more information). An application to the-
oretical computer science was found by Tropp [Tro09]
who used the Grothendieck factorization [Gro56] to give
an algorithmic version of a celebrated column subset se-
lection result of Bourgain and Tzafriri [BT87].

As an almost immediate consequence of convex
programming duality, our new algorithmic results also
imply some improved factorization results for ℓnp , ℓ

m
q (a

similar observation was already made by Tropp [Tro09]
in the special case of ℓn∞, ℓ

m
1 and for a slightly different

relaxation). We first state some classical factorization
results, for which we will use T2(X) and C2(X) to
respectively denote the Type-2 and Cotype-2 constants
of X. We refer the interested reader to the full
version [BGG+18b] for a more detailed description of
factorization theory as well as the relevant functional
analysis preliminaries.
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The Kwapień-Maurey [Kwa72, Mau74] theorem
states that for any pair of Banach spaces X and Y

Φ(X,Y ) ≤ T2(X) · C2(Y ) .

However, Grothendieck’s result [Gro56] shows that a
much better bound is possible in a case where T2(X)
is unbounded. In particular,

Φ(ℓn∞, ℓ
m
1 ) ≤ KG ,

for all m,n ∈ N. Pisier [Pis80] showed that if X or
Y satisfies the approximation property (which is always
satisfied by finite-dimensional spaces), then

Φ(X,Y ) ≤ (2 · C2(X
∗) · C2(Y ))

3/2
.

We show that the approximation ratio of Nesterov’s
relaxation is in fact an upper bound on the factorization
gap for the spaces ℓnp and ℓmq . Combined with our upper
bound on the integrality gap, we show an improved
bound on the factorization constant, i.e., for any p ≥
2 ≥ q and m,n ∈ N, we have that for X = ℓnp , Y = ℓmq

Φ(X,Y ) ≤ 1 + ε0

sinh−1(1)
· (C2(X

∗) · C2(Y )) ,

where ε0 ≤ 0.00863 as before. This improves on Pisier’s
bound for all p ≥ 2 ≥ q, and for certain ranges of (p, q)
it also improves upon KG and the bound of Kwapień-
Maurey.

Approximability and Factorizability. Let
(Xn) and (Ym) be sequences of Banach spaces such
that Xn is over the vector space R

n and Ym is over
the vector space R

m. We shall say a pair of sequences
((Xn), (Ym)) factorize if Φ(Xn, Ym) is bounded by a
constant independent of m and n. Similarly, we shall
say a pair of families ((Xn), (Ym)) are computationally
approximable if there exists a polynomial R(m,n), such
that for every m,n ∈ N, there is an algorithm with
runtime R(m,n) approximating ‖A‖Xn→Ym within a
constant independent of m and n (given an oracle
for computing the norms of vectors and a separation
oracle for the unit balls of the norms). We consider
the natural question of characterizing the families of
norms that are approximable and their connection to
factorizability and Cotype.

The pairs (p, q) for which (ℓnp , ℓ
m
q ) is known (resp.

not known) to factorize, are precisely those pairs (p, q)
which are known to be computationally approximable
(resp. inapproximable assuming hardness conjectures
like P 6= NP and ETH). Moreover the Hilbertian case
which trivially satisfies factorizability, is also known to
be computationally approximable (with approximation
factor 1).

It is tempting to ask whether the set of compu-
tationally approximable pairs coincides with the set of
factorizable pairs or the pairs for which X∗

n, Ym have
bounded (independent of m,n) Cotype-2 constant. Fur-
ther yet, is there a connection between the approxima-
tion factor and the factorization constant, or approxi-
mation factor and Cotype-2 constants (of X∗

n and Ym)?
Our work gives some modest additional evidence to-
wards such conjectures. Such a result would give cred-
ibility to the appealing intuitive idea of the approxi-
mation factor being dependent on the “distance” to a
Hilbert space.

2 Full Version

For the proofs of all results discussed above, we re-
fer the interested reader to the two-part full version:
[BGG+18a] (Hardness) and [BGG+18b] (Algorithm).

3 Layout

The subsequent sections are laid out in order as follows:
we give an overview of the hardness results (hypercon-
tractive followed by non-hypercontractive), followed by
an overview of the algorithmic results, followed by a de-
tailed description of the generalized Krivine rounding
procedure.

4 Hardness Proof Overview

The hardness of proving hardness for hyper-

contractive norms. Reductions for various geomet-
ric problems use a “smooth” version of the Label Cover
problem, composed with long-code functions for the la-
bels of the variables. In various reductions, including
the ones by Guruswami et al. [GRSW16] and Briët et
al. [BRS15] (which we closely follow) the solution vector
x to the geometric problem consists of the Fourier coeffi-
cients of the various long-code functions, with a “block”
xv for each vertex of the label-cover instance. The rele-
vant geometric operation (transformation by the matrix
A in our case) consists of projecting to a space which
enforces the consistency constraints derived from the
label-cover problem, on the Fourier coefficients of the
encodings.

However, this strategy presents with two problems
when designing reductions for hypercontractive norms.
Firstly, while projections maintain the ℓ2 norm of
encodings corresponding to consistent labelings and
reduce that of inconsistent ones, their behaviour is
harder to analyze for ℓp norms for p 6= 2. Secondly,
the global objective of maximizing ‖Ax‖q is required to
enforce different behavior within the blocks xv, than in
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the full vector x. The block vectors xv in the solution
corresponding to a satisfying assignment of label cover
are intended to be highly sparse, since they correspond
to “dictator functions” which have only one non-zero
Fourier coefficient. This can be enforced in a test
using the fact that for a vector xv ∈ R

t, ‖xv‖q is a
convex function of ‖xv‖p when p ≤ q, and is maximized
for vectors with all the mass concentrated in a single
coordinate. However, a global objective function which
tries to maximize

∑
v‖xv‖qq, also achieves a high value

from global vectors x which concentrate all the mass
on coordinates corresponding to few vertices of the
label cover instance, and do not carry any meaningful
information about assignments to the underlying label
cover problem.

Since we can only check for a global objective which
is the ℓq norm of some vector involving coordinates from
blocks across the entire instance, it is not clear how to
enforce local Fourier concentration (dictator functions
for individual long codes) and global well-distribution
(meaningful information regarding assignments of most
vertices) using the same objective function. While the
projector A also enforces a linear relation between the
block vectors xu and xv for all edges (u, v) in the label
cover instance, using this to ensure well-distribution
across blocks seems to require a very high density of
constraints in the label cover instance, and no hardness
results are available in this regime.

Our reduction. We show that when 2 /∈ [p, q], it
is possible to bypass the above issues using hardness of
‖A‖2→r as an intermediate (for r < 2). Note that since
‖z‖r is a concave function of ‖z‖2 in this case, the test
favors vectors in which the mass is well-distributed and
thus solves the second issue. For this, we use local tests
based on the Berry-Esséen theorem (as in [GRSW16]
and [BRS15]). Also, since the starting point now is the
ℓ2 norm, the effect of projections is easier to analyze.

By duality, we can interpret the above as a hardness
result for ‖A‖p→2 when p > 2 (using r = p∗). We
then convert this to a hardness result for p→q norm
in the hypercontractive case by composing A with
an “approximate isometry” B from ℓ2 → ℓq (i.e.,
∀y ‖By‖q ≈ ‖y‖2) since we can replace ‖Ax‖2 with
‖BAx‖q. Milman’s version of the Dvoretzky theorem
[Ver17] implies random operators to a sufficiently high
dimensional (nO(q)) space satisfy this property, which
then yields constant factor hardness results for the p→q
norm. A similar application of Dvoretzky’s theorem
also appears in an independent work of Krishnan et al.
[KMW18] on sketching matrix norms.

We also show that the hardness for hypercontractive
norms can be amplified via tensoring. This was known

previously for the 2→4 norm using an argument based
on parallel repetition for QMA [HM13], and for the case
of p = q [BV11]. We give a simple argument based on
convexity, which proves this for all p ≤ q, but appears
to have gone unnoticed previously. The amplification
is then used to prove hardness of approximation within
almost polynomial factors.

Non-hypercontractive norms. We also use the
hardness of ‖A‖2→r to obtain hardness for the non-
hypercontractive case of ‖A‖p→q with q < 2 < p, by
using an operator that “factorizes” through ℓ2. In partic-
ular, we obtain hardness results for ‖A‖p→2 and ‖A‖2→q

(of factors 1/γp∗and 1/γq respectively) using the reduc-
tion discussed above. We then combine these hardness
results using additional properties of the operator A ob-
tained in the reduction, to obtain a hardness of factor
(1/γp∗) · (1/γq) for the p→q norm for p > 2 > q.

We also obtain a simple proof of the 2Ω((logn)1−ε)

hardness for the non-hypercontractive case when 2 /∈
[q, p] (already proved by Bhaskara and Vijayaraghavan
[BV11]) via an approximate isometry argument as used
in the hypercontractive case. In the hypercontractive
case, we started from a constant factor hardness of
the p→2 norm and the same factor for p→q norm
using the fact that for a random Gaussian matrix B
of appropriate dimensions, we have ‖Bx‖q ≈ ‖x‖2 for
all x. We then amplify the hardness via tensoring. In
the non-hypercontractive case, we start with a hardness
for p→p norm (obtained via the above isometry), which
we first amplify via tensoring. We then apply another
approximate isometry result due to Schechtman [Sch87],
which gives a samplable distribution D over random
matrices B such that with high probability over B, we
have ‖Bx‖q ≈ ‖x‖p for all x.

We thus view the above results as showing that
combined with a basic hardness for p→2 norm, the
basic ideas of duality, tensoring, and embedding (which
builds on powerful results from functional analysis) can
be combined in powerful ways to prove strong results
in both the hypercontractive and non-hypercontractive
regimes.

5 Algorithm Proof overview

As discussed above, we consider Nesterov’s convex re-
laxation and generalize the hyperplane rounding scheme
using “Hölder duals” of the Gaussian projections, in-
stead of taking the sign. As in the Krivine rounding
scheme, this rounding is applied to transformations of
the SDP solutions. The nature of these transformations
depends on how the rounding procedure changes the
correlation between two vectors. Let u, v ∈ R

N be two
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unit vectors with 〈u, v〉 = ρ. Then, for g ∼ N (0, IN ),
〈g, u〉 and 〈g, v〉 are ρ-correlated Gaussian random vari-
ables. Hyperplane rounding then gives ±1 valued ran-
dom variables whose correlation is given by

E
g1∼ρ g2

[sgn(g1) · sgn(g2)] =
2

π
· sin−1(ρ) .

The transformations ϕ and ψ (to be applied to the vec-
tors u and v) in Krivine’s scheme are then chosen de-
pending on the Taylor series for the sin function, which
is the inverse of function computed on the correlation.
For the case of Hölder-dual rounding, we prove the fol-
lowing generalization of the above identity

E
g1∼ρ g2

[
sgn(g1) |g1|q−1 · sgn(g2) |g2|p

∗−1
]

= γqq · γp
∗

p∗ · ρ · 2F1

(
1− q

2
, 1− p∗

2
;
3

2
; ρ2
)
,

where 2F1 denotes a hypergeometric function with the
specified parameters. The proof of the above iden-
tity combines simple tools from Hermite analysis with
known integral representations from the theory of spe-
cial functions, and may be useful in other applications
of the rounding procedure.

Note that in the Grothendieck case, we have γp
∗

p∗ =

γqq =
√
2/π, and the remaining part is simply the

sin−1 function. In the Krivine rounding scheme, the
transformations ϕ and ψ are chosen to satisfy (2/π) ·
sin−1 (〈ϕ(u), ψ(v)〉) = c · 〈u, v〉, where the constant c
then governs the approximation ratio. The transforma-
tions ϕ(u) and ψ(v) taken to be of the form ϕ(u) =
⊕∞

i=1ai · u⊗i such that

〈ϕ(u), ψ(v)〉 = c′ sin (〈u, v〉) and ‖ϕ(u)‖2 = ‖ψ(v)‖ = 1

If f represents (a normalized version of) the function
of ρ occurring in the identity above (which is sin−1 for
hyperplane rounding), then the approximation ratio is
governed by the function h obtained by replacing every
Taylor coefficient of f−1 by its absolute value. While
f−1 is simply the sin function (and thus h is the sinh
function) in the Grothendieck problem, no closed-form
expressions are available for general p and q.

The task of understanding the approximation ratio
thus reduces to the analytic task of understanding the
family of the functions h obtained for different values
of p and q. Concretely, the approximation ratio is given
by the value 1/(h−1(1) · γq γp∗). At a high level, we
prove bounds on h−1(1) by establishing properties of
the Taylor coefficients of the family of functions f−1,
i.e., the family given by
{
f−1 | f(ρ) = ρ · 2F1

(
a1, b1 ; 3/2 ; ρ

2
)
, a1, b1 ∈ [0, 1/2]

}

While in the cases considered earlier, the functions h are
easy to determine in terms of f−1 via succinct formu-
lae [Kri77, Haa81, AN04] or can be truncated after the
cubic term [NR14], neither of these are true for the fam-
ily of functions we consider. Hypergeometric functions
are a rich and expressive class of functions, capturing
many of the special functions appearing in Mathemat-
ical Physics and various ensembles of orthogonal poly-
nomials. Due to this expressive power, the set of in-
verses is not well understood. In particular, while the
coefficients of f are monotone in p and q, this is not
true for f−1. Moreover, the rates of decay of the co-
efficients may range from inverse polynomial to super-
exponential. We analyze the coefficients of f−1 using
complex-analytic methods inspired by (but quite differ-
ent from) the work of Haagerup [Haa81] on bounding
the complex Grothendieck constant. The key technical
challenge in our work is in arguing systematically about

a family of inverse hypergeometric functions which we
address by developing methods to estimate the values
of a family of contour integrals.

While our methods only gives a bound of the form
h−1(1) ≥ sinh−1(1)/(1 + ε0), we believe this is an
artifact of the analysis and the true bound should indeed
be h−1(1) ≥ sinh−1(1).

6 Detailed Description of Algorithm

6.1 Notation For a non-negative real number r, we
define the r-th Gaussian norm of a standard gaussian g
as γr := (Eg∼N (0,1)[|g|r])1/r .

Given a vector x, we define the r-norm as ‖x‖rr =∑
i |xi|

r
for all r ≥ 1. For any r ≥ 0, we denote the dual

norm by r∗, which satisfies the equality: 1
r + 1

r∗ = 1.

For p ≥ 2 ≥ q ≥ 1, we will use the following
notation: a := p∗ − 1 and b := q − 1. We note that
a, b ∈ [0, 1].

For a m × n matrix M (or vector, when n = 1).
For an unitary function f , we define f [M ] to be the
matrix M with entries defined as (f [M ])i,j = f(Mi,j)
for i ∈ [m], j ∈ [n]. For vectors u, v ∈ R

ℓ, we denote by
u◦v ∈ R

ℓ the entry-wise/Hadamard product of u and v.
We denote the concatenation of two vectors u and v by
u⊕ v. For a vector u, we use Du to denote the diagonal
matrix with the entries of u forming the diagonal, and
for a matrix M we use diag(M) to denote the vector of
diagonal entries.

For a function f(τ) =
∑

k≥0 fk · τk defined as
a power series, we denote the function abs (f) (τ) :=∑

k≥0 |fk| · τk.
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6.2 Krivine’s Rounding Procedure

Krivine’s procedure centers around the classical random
hyperplane rounding. In this context, we define the
random hyperplane rounding procedure on an input pair
of matrices U ∈ R

m×ℓ, V ∈ R
n×ℓ as outputting the

vectors sgn[Ug] and sgn[V g] where g ∈ R
ℓ is a vector

with i.i.d. standard Gaussian coordinates (f [v] denotes
entry-wise application of a scalar function f to a vector
v. We use the same convention for matrices.). The
so-called Grothendieck identity states that for vectors
u, v ∈ R

ℓ,

E [sgn〈g , u〉 · sgn〈g , v〉] = sin−1〈û , v̂〉
π/2

where û denotes u/‖u‖2. This implies the following
equality which we will call the hyperplane rounding
identity:

(6.1) E
[
sgn[Ug](sgn[V g])T

]
=

sin−1[Û V̂ T ]

π/2
.

where for a matrix U , we use Û to denote the matrix
obtained by replacing the rows of U by the correspond-
ing unit (in ℓ2 norm) vectors. Krivine’s main observa-
tion is that for any matrices U, V , there exist matrices
ϕ(Û), ψ(V̂ ) with unit vectors as rows, such that

ϕ(Û)ψ(V̂ )T = sin[(π/2) · c · Û V̂ T ]

where c = sinh−1(1)·2/π. Taking Û , V̂ to be the optimal
solution to CP(A), it follows that

‖A‖∞→1 ≥
〈
A ,E

[
sgn[ϕ(Û)g] (sgn[ψ(V̂ )g])T

]〉

= 〈A , c · Û V̂ T 〉 = c · CP(A) .
The proof of Krivine’s observation follows from simu-
lating the Taylor series of a scalar function using inner
products. We will now describe this more concretely.

Lemma 6.1. (Krivine) Let f : [−1, 1] → R be a scalar

function satisfying f(ρ) =
∑

k≥1 fk ρ
k for an absolutely

convergent series (fk). Let abs (f) (ρ) :=
∑

k≥1 |fk| ρk
and further for vectors u, v ∈ R

ℓ of ℓ2-length at most 1,
let

SL(f, u) := (sgn(f1)
√
f1 · u)⊕ (sgn(f2)

√
f2 · u⊗2)⊕ · · ·

SR(f, v) := (
√
f1 · v)⊕ (

√
f2 · v⊗2)⊕ · · ·

Then for any U ∈ R
m×ℓ, V ∈ R

n×ℓ, SL(f,
√
cf · Û)

and SR(f,
√
cf · V̂ ) have ℓ2-unit vectors as rows, and

SL(f,
√
cf · Û) SR(f,

√
cf · V̂ )T = f [cf · Û V̂ T ]

where SL(f,W ) for a matrix W , is applied to row-wise

and cf := (abs (f)
−1

)(1).

Proof. Using the facts 〈y1 ⊗ y2 , y3 ⊗ y4〉 = 〈y1 , y3〉 ·
〈y2 , y4〉 and
〈y1 ⊕ y2 , y3 ⊕ y4〉 = 〈y1 , y3〉+ 〈y2 , y4〉, we have

- 〈SL(f, u) , SR(f, v)〉 = f(〈u , v〉)

- ‖SL(f, u)‖2 =
√

abs (f) (‖u‖22)

- ‖SR(f, v)‖2 =
√

abs (f) (‖v‖22)

The claim follows.

Before stating our full rounding procedure, we first
discuss a natural generalization of random hyperplane
rounding, and much like in Krivine’s case this will guide
the final procedure.

6.3 Generalizing Random Hyperplane Round-

ing – Hölder Dual Rounding

Fix any convex bodies B1 ⊂ R
m and B2 ⊂ R

k. Sup-
pose that we would like a strategy that for given vec-
tors y ∈ R

m, x ∈ R
n, outputs y ∈ B1, x ∈ B2 so that

yTAx = 〈A , y xT 〉 is close to 〈A , y xT 〉 for all A. A
natural strategy is to take

(y, x) := argmax
(ỹ,x̃)∈B1×B2

〈
ỹ x̃T , y xT

〉

=

(
argmax
ỹ∈B1

〈ỹ , y〉 , argmax
x̃∈B2

〈x̃ , x〉
)

In the special case where B is the unit ℓp ball, there is a
closed form for an optimal solution to maxx̃∈B〈x̃ , x〉,
given by Ψp∗(x)/‖x‖p

∗−1
p∗ , where Ψp∗(x) := sgn[x] ◦

|[x]|p∗−1. Note that for p = ∞, this strategy recovers
the random hyperplane rounding procedure. We shall
call this procedure, Gaussian Hölder Dual Rounding or
Hölder Dual Rounding for short.

Just like earlier, we will first understand the effect
of Hölder Dual Rounding on a solution pair U, V . For
ρ ∈ [−1, 1], let g1 ∼ρ g2 denote ρ-correlated standard

Gaussians, i.e., g1 = ρg2+
√
1− ρ2 g3 where (g2,g3) ∼

N (0, I2), and let

f̃a, b(ρ) := E
g1∼ρg2

[
sgn(g1)|g1|b sgn(g2)|g1|a

]

We will work towards a better understanding of f̃a, b(·)
in later sections. For now note that we have for vectors
u, v ∈ R

ℓ,

E
[
sgn〈g , u〉 |〈g , u〉|b · sgn〈g , v〉 |〈g , v〉|a

]

= ‖u‖b2 · ‖v‖a2 · f̃a, b(〈û , v̂ 〉) .
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Thus given matrices U, V , we obtain the following
generalization of the hyperplane rounding identity for
Hölder Dual Rounding :

E
[
Ψq([Ug]) Ψp∗([V g])T

]

= D(‖ui‖b
2)i∈[m]

· f̃a, b([Û V̂ T ]) ·D(‖vj‖a
2 )j∈[n]

.(6.2)

6.4 Generalized Krivine Transformation and

the Full Rounding Procedure

We are finally ready to state the generalized version of
Krivine’s algorithm. At a high level the algorithm sim-
ply applies Hölder Dual Rounding to a transformed ver-
sion of the optimal convex program solution pair U, V .
Analogous to Krivine’s algorithm, the transformation is
a type of “inverse” of Eq. 6.2.

(Inversion 1) Let (U, V ) be the optimal solution to
CP(A), and let (ui)i∈[m] and (vj)j∈[n]

respectively denote the rows of U and V .

(Inversion 2) Let ca,b :=
(
abs

(
f̃−1
a, b

))−1

(1) and let

ϕ(U) := D
(‖ui‖

1/b
2 )i∈[m]

SL(f̃
−1
a, b,

√
ca,b · Û) ,

ψ(V ) := D
(‖vj‖

1/a
2 )j∈[n]

SR(f̃
−1
a, b,

√
ca,b · V̂ ) .

(Hölder-Dual 1) Let g ∼ N (0, I) be an infinite dimen-
sional i.i.d. Gaussian vector.

(Hölder-Dual 2) Return y := Ψq(ϕ(U)g)/‖ϕ(U)g‖bq
and x := Ψp∗(ψ(V )g)/‖ψ(V )g‖ap∗ .

Remark 1. Note that ‖Ψr(x)‖r∗ = ‖x‖r−1
r and so

the returned solution pair always lie on the unit ℓq∗ and
ℓp spheres respectively.

Remark 2. Like in [AN04] the procedure above
can be made algorithmic by observing that there always
exist ϕ′(U) ∈ R

m×(m+n) and ψ′(V ) ∈ R
m×(m+n), whose

rows have the exact same lengths and pairwise inner
products as those of ϕ(U) and ψ(V ) above. Moreover
they can be computed without explicitly computing
ϕ(U) and ψ(V ) by obtaining the Gram decomposition
of

M :=

 abs

(
f̃−1
a, b

)
[ca,b · V̂ V̂ T ] f̃−1

a, b([ca,b · Û V̂ T ])

f̃−1
a, b([ca,b · V̂ ÛT ]) abs

(
f̃−1
a, b

)
[ca,b · V̂ V̂ T ]


 ,

and normalizing the rows of the decomposition accord-
ing to the definition of ϕ(·) and ψ(·) above. The entries

of M can be computed in polynomial time with expo-
nentially (in m and n) good accuracy by implementing

the Taylor series of f̃−1
a, b upto poly(m,n) terms (Tay-

lor series inversion can be done upto k terms in time
poly(k)).

Remark 3. Note that the 2-norm of the i-th row
(resp. j-th row) of ϕ(U) (resp. ψ(V )) is ‖ui‖1/b2 (resp.

‖vj‖1/a2 ).
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